Climate Action Plan

Project Kick-off Meeting

October 11, 2023

Regional Planning Commission

Agenda

- 1. Welcome and Introductions
- 2. Project Background
- 3. Project Approach
- 4. Project Schedule
- 5. Discussion & Questions

Introductions

SSG

SSC We are the leading climate action planners for the Americas

Project Background

SSG

Project Background

- MVRPC received \$1 Million grant from federal government for climate action planning for the Miami Valley region
- Sustainability Solutions Group (SSG) contracted to support MVRPC in developing climate action plans over next three years
- CPRG-specific implementation grant applications due in April 2024
- Climate action supported by many other federal grant and revenue sources

Project Approach

SSG

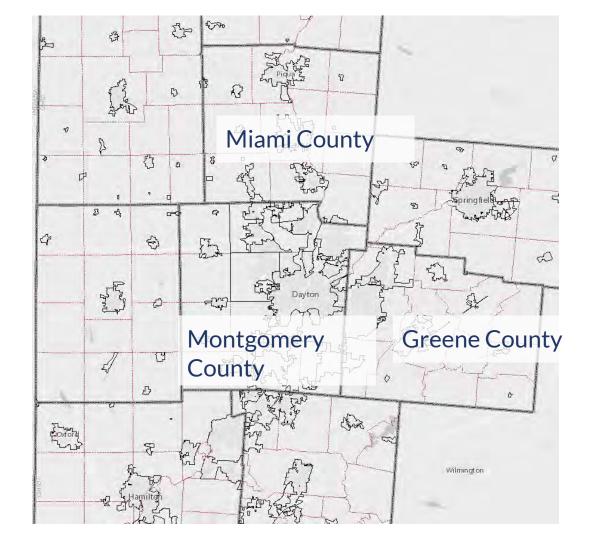
Project Overview

Elements of Deliverables	Associated Deliverables				
	PCAP	CCAP	SR		
	Deadline: March 1, 2024	Deadline: June 5, 2025	Deadline: June 1, 2027		
GHG Inventory					
Identification and Quantification of Priority GHG Reduction Measures					
LIDAC Benefits Analysis					
Engagement Plan			1.00		
Coordination with Other Ongoing Climate Plan Engagement Activities			0		
Review of Authority to Implement			1.1		
Intersections with Other Federal Funding Availability					
GHG Projections and Targets	1				
Identification and Quantification of Comprehensive GHG Reduction Measures			200		
Leverage and Intersection with Other Funding					
Workforce Planning Analysis					
Implementation Status of GHG Reduction Measures					
Updated Benefits Analysis for Full Geographic Scope and Population					
Updated LIDAC Benefits Analysis					
Updated Review of Authority to Implement					
Updated Review of Intersection with Other Funding Availability					
Next Steps/Future Budget/Staffing Needs	1				

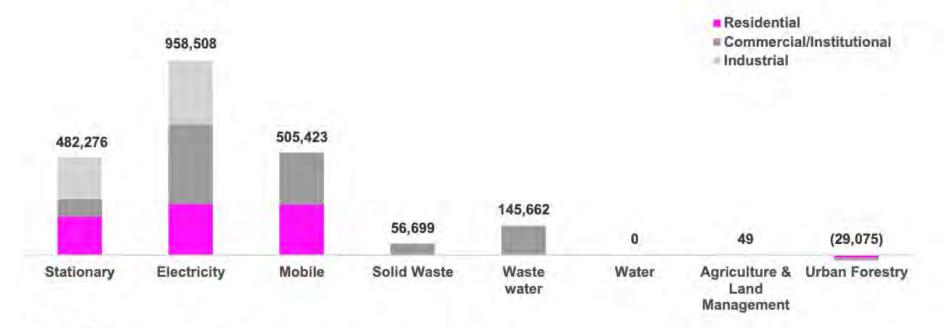
Two* Projects in One

Priority Climate Action Plan

High-priority, near-term, implementation-ready actions


- Three-county GHG inventory
- Actions gathered from MVRPC members and SSG's Actions Database, in key sectors
- Selection for:
 - High emissions impact
 - LIDAC benefits,
 - 'Implementation-ready'
- Support April 2024 competitive funding applications.

Comprehensive Climate Action Plan


Full plan to reach long-term reduction targets

- Primary energy use, building portfolio, transportation, industry, green infrastructure and waste data,
- Comprehensive modeling and analysis of geographically-specific actions to achieve MVRPC's long-term, emissions reduction goals.

Geographic Scope

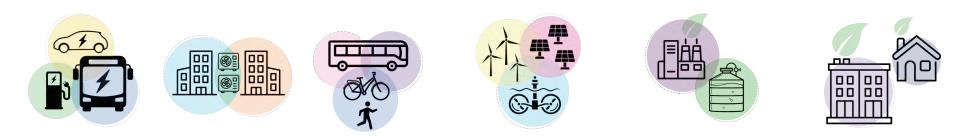
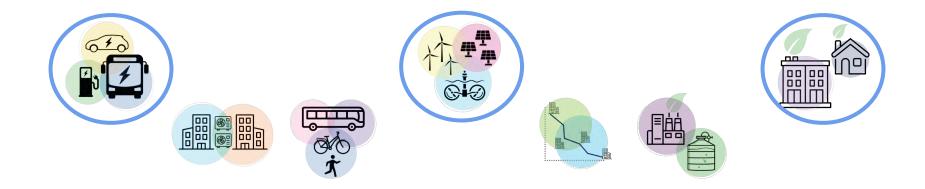
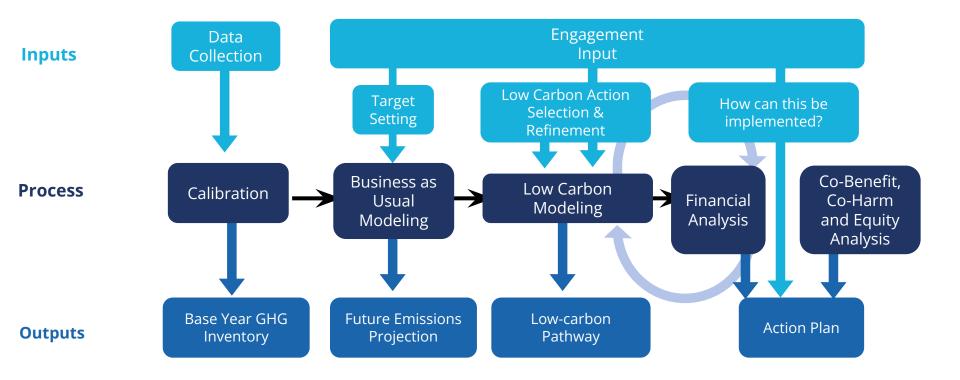
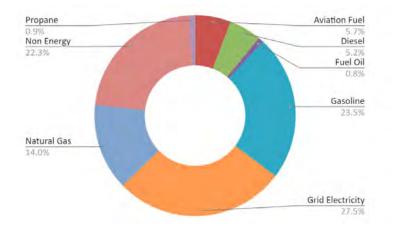

Where do Miami Valley's emissions come from?

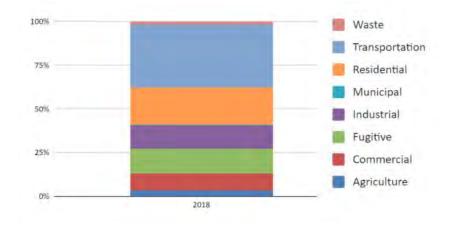
Figure 3. Emissions by Source and Sector – City of Dayton 2019 (MTCO₂e)


Figure 6. 2019 Gross Emissions per Capita PCAP Approach: Which actions will provide the greatest benefits in those sectors?


PCAP Approach: Evaluate Actions

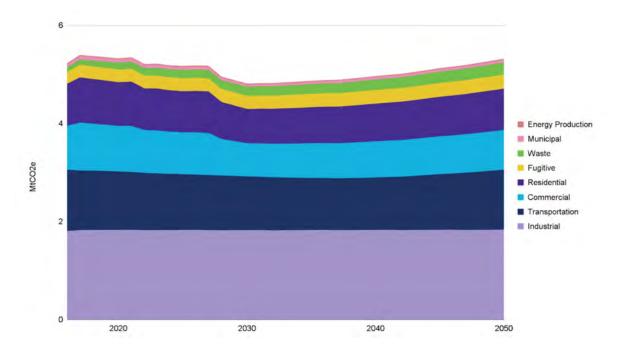
is St	andardized Action Name Pa	aradigm Approach	Ab	out this action Pro	oportion of total reduction _ T Co	p-benefits N	(andatory/ Optional Dependen Ca	se Studies for Reference
Decarbonized Energy	Procure RNG	Replace		-	10.6%	Capital cost savings. Supports 'greening of the grid' for th	If significant need for nat	
Decarbonized Energy $$\zeta_3 \sim$	Add energy storage	Reduce		Many of the lea	4.6%	Ongoing power availability during grid outages Lower or	-	Blatchford Community in Edmo
Water Use Local Energ	Increase fresh water storage	Avoid Re	eplace		÷ .	Increased resilience	81	The Aguas Andinas water utilit
	Pumped hydro storage	Replace		This refers to a	-		-	
Decarbonized Energy	Store heat underground or in sand	Replace		Heat can be sto	-		-	Sand battery is in use in Kanka
Buildings	Demolish selected buildings	Reduce		If buildings exis	3.5%	Creates opportunities for upgrading/ transforming neighbo	If buildings exist that can	Blatchford Community in Edm
Land Use	Increase small-scale mix of building types	Reduce	Avoid		3.5%, 0.0%	Reduced energy bills Reduced road congestion Creates	This is one approach to d	Blatchford Community in Edm
Land Use § 2 ~	Increase urban density	Avoid Re	educe	-	2.0%, 3.7%, -5.0%	Reduced energy bills Reduced road congestion Creates	-	Blatchford Community in Edm
Land Use	Fix or reduce municipal boundary	Reduce		-	8	Shorter commute distances Lower municipal developmen	This reduces overall com	
Land Use	Reduce lot size	Avoid Re	educe	-	É.	Lower municipal development costs Protects areas outsid	This reduces overall com	Blatchford Community in Edn
Decarbonized Energy	Expand areas using district energy	Reduce		This action focu	1.0%, 0.2%	Lower or zero utility bills Space savings Reduces overall	Adding district energy is	Blatchford Community in Edn
Transportation 3, 15 ~	Reduce driving ICE vehicles - both the number of trips and the distances driven	Reduce		-	0.9%	Improved Safety Better outdoor air quality Reduced roam	Having a goal like this is a	Osio's Zero Emissions City Ce
Transportation	Use cargo bikes for last km / mile delivery	Avoid		-	2.5%, 0.5%, 0.0%, 1.1%, 1	Reduced vehicle km or miles travelled Less pollution Rec	This is an approach to de	Europe's Cargo Bike Friendly
	Reduce available parking at destinations and origins	Avoid Re	educe	-	0.9%, 1.1%	Reduced road congestion Creates opportunities for upgra	This is one approach to di	Blatchford Community in Edn
Transportation	Increase transit mode share	Reduce		S	0.6%, 0.8%, -0.3%, 8.1%,	Improved mental health Improved long-term affordability	If there is transit and it's e	France mandates car ads mus
Transportation	Increase active transportation mode share	Avoid		Shifting a large	0.5%, 1.1%, 1.8%, 2.5%, 0	Reduced health costs Improved mental health Less emp		France mandates car ads mu
Transportation	Work/ study from home	Avoid		-	0.2%, 0.2%	Capital cost savings Space savings Reduced road conget	This is one approach to re	
	Create Commercial Delivery Hubs	Reduce		-	0.2%, 6.7%	Reduced vehicle km or miles travelied Less pollution Rec	Very effective when there	Europe's Cargo Bike Friendly
Transportation	Decarbonize and increase shared mobility	Reduce	Replac	-	0.1%, 0.7%, 0.1%	Less noise Better outdoor air quality Financial savings of	This is one approach to re	Montreal's bike share service
Transportation	Decrease vehicle km traveled	Reduce		-	0.1%, 1.3%	Reduced road congestion Less noise Better outdoor air i	Having a goal like this is a	Tokyo's population travels al
	Discourage use of ICE vehicles with congestion charges, parking charges for ICE veh	Reduce	Replac	-	0.0%	Better outdoor air quality Reduced road congestion Imp	This is one approach to di	Gas cars totally banned from
	Establish car-free zones	Avoid Re	educe	-	0,0%	Better outdoor air quality Less noise Creates opportuniti	This is one approach to a	Europe's Cargo Bike Friendly
Transportation	Eliminate fossil fuel vehicle fueling locations	Avoid Re	eplace	-	-	Creates opportunities for upgrading/ transforming neighbo	This is one approach to a	
Transportation	Decrease vehicle ownership	Reduce		÷	51	Capital cost savings Reduced health costs Financial savin	Depends on how much of	Tokyo's population travels al
	Reduce purchases of non-local products requiring delivery	Reduce		9	-	Reduced road congestion Creates opportunities for circul		Reducing supply chain emiss
Agriculture Decarboni	Install anaerobic digesters on Individual farms	Reduce		-	8	Lower or zero utility bills Better outdoor air quality Poter	-	Dairy farmers of Canada 201
Agriculture	Reduce conventional tillage practices for crops	Reduce		0	-	Increased resilience Reduced risk of pollution Reduced li	-	Dairy farmers of Canada 201
Industry 5.2 -	Improve industrial energy efficiency	Avoid Re	educe	2	0.9%, 0.9%, 3.8%, 9.0%, 8	Reduced energy bills Lower or zero utility bills Better air	If there is industry presen	Replace pneumatic motors w

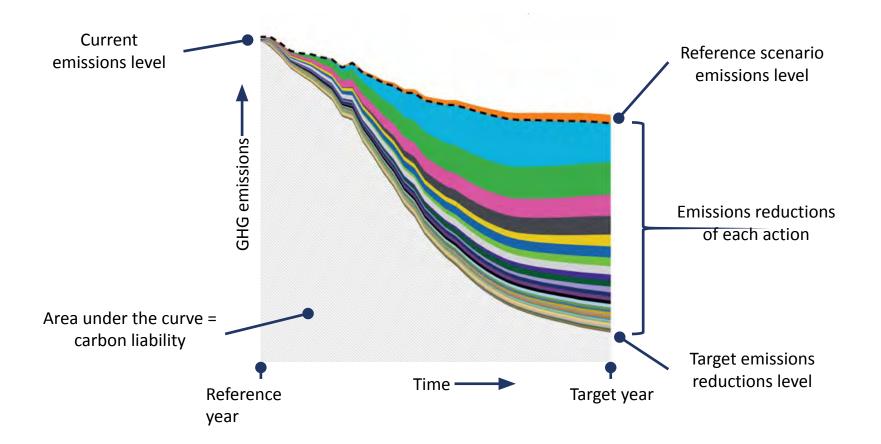

PCAP Approach: Present Actions for Approval and Prepare for 2024 Funding Applications



CCAP Approach: Iterative Feedback + Analysis

CCAP Approach: Where do Miami Valley's emissions come from?




By Fuel

By Sector

CCAP Approach: What will happen if we don't change?

Approach: Develop Comprehensive Action Set

Approach: Engagement and Equity Strategy

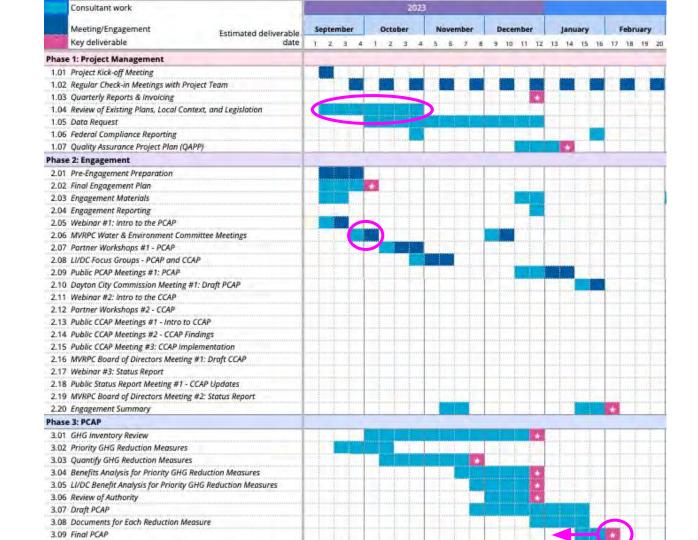
1. Pre-Engagement

- Interviews
- Pre-engagement summary
- 2. Engagement Plan
 - New Reach Community Consulting
 - IAP2 framework
 - Justice40
 - Dayton and MVRPC's existing equity information
- 3. Active Engagement Activities
- 4. Equity Lens informs PCAP and detailed feedback informs CCAP.

40% of Dayton households can afford their home energy bills.

Households with less than 5% home energy burden

27% of Dayton households may be struggling with some of their home energy bills.


Households with home energy burdens between 5% and 10%

Another 33% of Dayton households are unable to afford their home energy bills.

Project Schedule

SSG

Discussion

Discussion:

- 1. What are your goals for climate action planning in the Miami Valley?
- 2. What are your priority actions for the PCAP?
- 3. What challenges do you anticipate?